Sains Malaysiana 52(12)(2023): 3551-3561

http://doi.org/10.17576/jsm-2023-5212-16

 

A Coral-Like Mo2C/TiO2 Photoelectrode for Photoelectrochemical Water Splitting

(Fotoelektrod Mo2C/TiO2 Berstruktur Karang untuk Aplikasi Pembelahan Air Fotoelektrokimia)

 

SITI NURUL FALAEIN MORIDON1, KHUZAIMAH ARIFIN1,3,*, LORNA JEFFERY MINGGU1,  MOHAMAD AZUWA MOHAMED2, MASLIANA MUSLIMIN4, AHMAD ZAKI ZAINI2 & MOHAMMAD B. KASSIM1,2

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia

4Agensi Nuklear Malaysia, 43000 Kajang, Bangi, Selangor, Malaysia

 

Received: 21 June 2023/Accepted: 4 December 2023

 

Abstract

Titanium dioxide (TiO2) is one of the most explored photoelectrode materials of water splitting for hydrogen generation. However, TiO2 has a bandgap of 3.2 eV, which restricts its energy absorption to UV light, and the photoexcited electrons and holes swiftly recombine. Thus, alteration of the band structure, such as by adding materials as cocatalysts, is needed. 2D molybdenum carbide (Mo2C) has been researched extensively as an excellent non-noble cocatalyst owing to its Pt-like H+ adsorption capacity and high conductivity. In this work, composites of TiO2 and Mo2C with four different compositions were produced using the sol-gel method, and their photoelectrochemical activity for water splitting was assessed. The composites were spin-coated onto FTO conducting glass, and FESEM analysis indicated that TiO2 nanoparticles are widely disseminated across Mo2C to form coral-like structures. Analysis via X-ray diffraction verified the existence of peaks composed of TiO2 and Mo2C. The sample containing 3% Mo2C had the greatest increase in photocurrent density, which was approximately 1.56 mA cm-2 at a potential of 1.0 V against Ag/AgCl (1.59 vs. RHE), which is five times that of bare TiO2. In addition, the composite's onset potential moved to a lower potential. Our findings suggest that adding Mo2C increases the photoelectrochemical performance of the TiO2 photoelectrode. This work indicates the feasibility of employing Mo2C as a cocatalyst to improve the performance of TiO2 for photoelectrochemical H2 production.

 

Keywords: Molybdenum carbide (Mo2C); photoanode and water-splitting; titanium dioxide (TiO2)

 

Abstrak

Titanium dioksida (TiO2) merupakan salah satu bahan fotoelektrod yang paling diterokai untuk aplikasi pembelahan molekul air bagi penjanaan gas hidrogen. Namun, TiO2 mempunyai jurang jalur lebar 3.2 eV yang mengehadkan penyerapan tenaganya kepada cahaya UV serta elektron dan lohong foto teruja bergabung semula dengan cepat. Oleh itu, pengubahan struktur jalur dengan kaedah seperti penambahan bahan tambah sebagai ko-pemangkin amat diperlukan. Molibdenum karbida 2D (Mo2C) telah dikaji secara meluas sebagai ko-pemangkin kerana kapasiti penyerapan H+ seperti Pt dan kekonduksian yang tinggi. Dalam kajian ini, komposit TiO2 dan Mo2C dengan empat komposisi berbeza dihasilkan menggunakan kaedah sol-gel dan aktiviti fotoelektrokimia bagi proses pembelahan air dinilai. Komposit ini disapukan pada kaca konduktif FTO melalui kaedah salutan putaran dan analisis FESEM menunjukkan bahawa nanozarah TiO2 tersebar luas di sekitar Mo2C untuk membentuk struktur seperti karang. Analisis melalui difraksi sinar-X mengesahkan kewujudan puncak yang terdiri daripada TiO2 dan Mo2C. Sampel yang mengandungi 3% Mo2C menunjukkan peningkatan ketumpatan fotoarus yang terbesar, iaitu sekitar 1.56 mA cm-2 pada keupayaan 1.0 V berbanding dengan Ag/AgCl (1.59 berbanding RHE), yang merupakan lima kali ganda TiO2 kosong. Selain itu, keupayaan permulaan komposit bergerak ke keupayaan yang lebih rendah. Penemuan kami menunjukkan bahawa penambahan Mo2C meningkatkan prestasi fotoelektrokimia fotoelektrod TiO2. Kajian ini menunjukkan kerealisasian penggunaan Mo2C sebagai ko-pemangkin untuk meningkatkan prestasi TiO2 dalam penghasilan H2 secara fotoelektrokimia.

 

Kata kunci: Fotoarus dan pembelahan air; molibdenum karbida (Mo2C); titanium dioksida (TiO2)

 

REFERENCES

Habibi-Hagh, F., Foruzin, L.J. & Nasirpouri, F. 2023. Remarkable improvement of photoelectrochemical water splitting in pristine and black anodic TiO2 nanotubes by enhancing microstructural ordering and uniformity. International Journal of Hydrogen Energy 48(30): 11225-11236. https://doi.org/10.1016/j.ijhydene.2022.07.158

Hankin, A., Bedoya-Lora, F.E., Alexander, J.C., Regoutz, A. & Kelsall, G.H. 2019. Flat band potential determination: Avoiding the pitfalls. Journal of Materials Chemistry A 7(45): 26162-26176. https://doi.org/10.1039/C9TA09569A

Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu & Mohammad B. Kassim. 2021. Improvement of TiO2 nanotubes for photoelectrochemical water splitting. International Journal of Hydrogen Energy 46(7): 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063

Li, H., Hong, W., Cui, Y., Fan, S. & Zhu, L. 2013. Effect of Mo2C content on the structure and photocatalytic property of Mo2C/TiO2 catalysts. Journal of Alloys and Compounds 569: 45-51. https://doi.org/10.1016/j.jallcom.2013.03.165

Liu, J., Hodes, G., Yan, J. & Liu, S. (F). 2021. Metal-doped Mo2C (metal= Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chinese Journal of Catalysis 42(1): 205-216.

Mohamed, M.A., Zain, M.F.M., Minggu, L.J., Kassim, M.B., Jaafar, J., Amin, N.A.S., Mastuli, M.S., Wu, H., Wong, R.J. & Ng, Y.H. 2019. Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. Journal of Industrial and Engineering Chemistry 77: 393-407. https://doi.org/10.1016/j.jiec.2019.05.003

Moridon, S.N.F., Anggraini, D., Arifin, K., Minggu, L.J. & Kassim, M.B. 2022a. Photocatalytic hydrogen generation from water by TiO2/Co3O4 composite photocatalysis. Malaysian Journal of Analytical Sciences 26(3): 581-588.

Moridon, S.N.F., Arifin, K., Yunus, R.M., Minggu, L.J. & Kassim, M.B. 2022b. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review. Ceramics International 48(5): 5892-5907. https://doi.org/10.1016/j.ceramint.2021.11.199

Mustafid Amna Rambey, Khuzaimah Arifin, Lorna Jeffery Minggu & Mohammad B. Kassim. 2020. Cobalt sulfide as photoelectrode of photoelectrochemical hydrogen generation from water. Sains Malaysiana 49(12): 3117-3123. http://dx.doi.org/10.17576/jsm-2020-4912

Ng Kim Hang, Lorna Jeffery Minggu, Wun Fui Mark-Lee, Khuzaimah Arifin, Mohammad Hafizuddin Hj Jumali & Mohammad B. Kassim. 2018. A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52. https://doi.org/10.1016/j.materresbull.2017.04.019

Praus, P. 2021. On electronegativity of graphitic carbon nitride. Carbon 172: 729-732. https://doi.org/10.1016/j.carbon.2020.10.074

Seh, Z.W., Fredrickson, K.D., Anasori, B., Kibsgaard, J., Strickler, A.L., Lukatskaya, M.R., Gogotsi, Y., Jaramillo, T.F. & Vojvodic, A. 2016. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters 1(3): 589-594. https://doi.org/10.1021/acsenergylett.6b00247

Wang, Q., He, J., Shi, Y., Zhang, S., Niu, T., She, H. & Bi, Y. 2017. Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chemical Engineering Journal 326: 411-418. https://doi.org/10.1016/j.cej.2017.05.171

Yue, X., Yi, S., Wang, R., Zhang, Z. & Qiu, S. 2017. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. Journal of Materials Chemistry A 5(21): 10591-10598. https://doi.org/10.1039/C7TA02655B

Zhou, Y., Tan, Y., Xiang, Y. & Zhu, J. 2019. Construction of urchin‐like ZnO/TiO2 direct Z‐scheme system to improve charge separation. ChemistrySelect 4(44): 12963-12970. https://doi.org/10.1002/slct.201903905

 

*Corresponding author; email: khuzaim@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous