Sains Malaysiana 52(12)(2023): 3551-3561
http://doi.org/10.17576/jsm-2023-5212-16
A
Coral-Like Mo2C/TiO2 Photoelectrode for
Photoelectrochemical Water Splitting
(Fotoelektrod Mo2C/TiO2 Berstruktur Karang untuk Aplikasi Pembelahan Air Fotoelektrokimia)
SITI NURUL FALAEIN MORIDON1, KHUZAIMAH ARIFIN1,3,*, LORNA JEFFERY MINGGU1, MOHAMAD AZUWA MOHAMED2, MASLIANA MUSLIMIN4,
AHMAD ZAKI ZAINI2 & MOHAMMAD B. KASSIM1,2
1Fuel Cell Institute,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Chemical
Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Research Center for Advanced Materials, National Research
and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia
4Agensi Nuklear
Malaysia, 43000 Kajang, Bangi, Selangor, Malaysia
Received: 21 June 2023/Accepted: 4 December
2023
Abstract
Titanium dioxide (TiO2) is one of the most explored
photoelectrode materials of water splitting for hydrogen generation. However,
TiO2 has a bandgap of 3.2 eV, which restricts its energy absorption
to UV light, and the photoexcited electrons and holes swiftly recombine. Thus,
alteration of the band structure, such as by adding materials as cocatalysts,
is needed. 2D molybdenum carbide (Mo2C) has been researched
extensively as an excellent non-noble cocatalyst owing to its Pt-like H+ adsorption capacity and high conductivity. In this work, composites of TiO2 and Mo2C with four different compositions were produced using the
sol-gel method, and their photoelectrochemical activity for water splitting was
assessed. The composites were spin-coated onto FTO conducting glass, and FESEM
analysis indicated that TiO2 nanoparticles are widely disseminated
across Mo2C to form coral-like structures. Analysis via X-ray
diffraction verified the existence of peaks composed of TiO2 and Mo2C.
The sample containing 3% Mo2C had the greatest increase in
photocurrent density, which was approximately 1.56 mA cm-2 at a
potential of 1.0 V against Ag/AgCl (1.59 vs. RHE), which is five times that of
bare TiO2. In addition, the composite's onset potential moved to a
lower potential. Our findings suggest that adding Mo2C increases the
photoelectrochemical performance of the TiO2 photoelectrode. This
work indicates the feasibility of employing Mo2C as a cocatalyst to
improve the performance of TiO2 for photoelectrochemical H2 production.
Keywords: Molybdenum carbide (Mo2C); photoanode and
water-splitting; titanium dioxide (TiO2)
Abstrak
Titanium dioksida (TiO2)
merupakan salah satu bahan fotoelektrod yang paling diterokai untuk aplikasi
pembelahan molekul air bagi penjanaan gas hidrogen. Namun, TiO2 mempunyai jurang jalur lebar 3.2 eV yang mengehadkan penyerapan tenaganya
kepada cahaya UV serta elektron dan lohong foto teruja bergabung semula dengan
cepat. Oleh itu, pengubahan struktur jalur dengan kaedah seperti penambahan
bahan tambah sebagai ko-pemangkin amat diperlukan. Molibdenum karbida 2D (Mo2C)
telah dikaji secara meluas sebagai ko-pemangkin kerana kapasiti penyerapan H+ seperti Pt dan kekonduksian yang tinggi. Dalam kajian ini, komposit TiO2 dan Mo2C dengan empat komposisi berbeza dihasilkan menggunakan
kaedah sol-gel dan aktiviti fotoelektrokimia bagi proses pembelahan air
dinilai. Komposit ini disapukan pada kaca konduktif FTO melalui kaedah salutan
putaran dan analisis FESEM menunjukkan bahawa nanozarah TiO2 tersebar luas di sekitar Mo2C untuk membentuk struktur seperti
karang. Analisis melalui difraksi sinar-X mengesahkan kewujudan puncak yang
terdiri daripada TiO2 dan Mo2C. Sampel yang mengandungi
3% Mo2C menunjukkan peningkatan ketumpatan fotoarus yang terbesar,
iaitu sekitar 1.56 mA cm-2 pada keupayaan 1.0 V berbanding dengan Ag/AgCl (1.59
berbanding RHE), yang merupakan lima kali ganda TiO2 kosong. Selain
itu, keupayaan permulaan komposit bergerak ke keupayaan yang lebih rendah.
Penemuan kami menunjukkan bahawa penambahan Mo2C meningkatkan
prestasi fotoelektrokimia fotoelektrod TiO2. Kajian ini menunjukkan
kerealisasian penggunaan Mo2C sebagai ko-pemangkin untuk
meningkatkan prestasi TiO2 dalam penghasilan H2 secara
fotoelektrokimia.
Kata kunci: Fotoarus dan pembelahan
air; molibdenum karbida (Mo2C); titanium dioksida (TiO2)
REFERENCES
Habibi-Hagh, F., Foruzin, L.J. & Nasirpouri, F. 2023.
Remarkable improvement of photoelectrochemical water splitting in pristine and
black anodic TiO2 nanotubes by enhancing microstructural ordering
and uniformity. International Journal of
Hydrogen Energy 48(30): 11225-11236.
https://doi.org/10.1016/j.ijhydene.2022.07.158
Hankin, A., Bedoya-Lora, F.E., Alexander, J.C., Regoutz,
A. & Kelsall, G.H. 2019. Flat band potential determination: Avoiding the
pitfalls. Journal of Materials Chemistry A 7(45): 26162-26176. https://doi.org/10.1039/C9TA09569A
Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery
Minggu & Mohammad B. Kassim. 2021. Improvement of TiO2 nanotubes
for photoelectrochemical water splitting. International Journal of Hydrogen
Energy 46(7): 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
Li, H., Hong, W., Cui, Y., Fan, S. & Zhu, L. 2013.
Effect of Mo2C content on the structure and photocatalytic property
of Mo2C/TiO2 catalysts. Journal of Alloys and Compounds 569: 45-51. https://doi.org/10.1016/j.jallcom.2013.03.165
Liu, J., Hodes, G., Yan, J. & Liu, S. (F). 2021.
Metal-doped Mo2C (metal= Fe, Co, Ni, Cu) as catalysts on TiO2 for
photocatalytic hydrogen evolution in neutral solution. Chinese Journal of Catalysis 42(1): 205-216.
Mohamed, M.A., Zain, M.F.M., Minggu, L.J., Kassim, M.B.,
Jaafar, J., Amin, N.A.S., Mastuli, M.S., Wu, H., Wong, R.J. & Ng, Y.H.
2019. Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic
activity. Journal of Industrial and
Engineering Chemistry 77: 393-407.
https://doi.org/10.1016/j.jiec.2019.05.003
Moridon, S.N.F., Anggraini, D., Arifin, K., Minggu, L.J.
& Kassim, M.B. 2022a. Photocatalytic hydrogen generation from water by TiO2/Co3O4 composite photocatalysis. Malaysian
Journal of Analytical Sciences 26(3): 581-588.
Moridon, S.N.F., Arifin, K., Yunus, R.M., Minggu, L.J.
& Kassim, M.B. 2022b. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review. Ceramics International 48(5): 5892-5907.
https://doi.org/10.1016/j.ceramint.2021.11.199
Mustafid Amna Rambey, Khuzaimah Arifin, Lorna Jeffery
Minggu & Mohammad B. Kassim. 2020. Cobalt sulfide as photoelectrode of
photoelectrochemical hydrogen generation from water. Sains Malaysiana 49(12): 3117-3123.
http://dx.doi.org/10.17576/jsm-2020-4912
Ng Kim Hang, Lorna Jeffery Minggu, Wun Fui Mark-Lee,
Khuzaimah Arifin, Mohammad Hafizuddin Hj Jumali & Mohammad B. Kassim. 2018.
A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52. https://doi.org/10.1016/j.materresbull.2017.04.019
Praus, P. 2021. On electronegativity of graphitic carbon
nitride. Carbon 172: 729-732. https://doi.org/10.1016/j.carbon.2020.10.074
Seh, Z.W., Fredrickson, K.D., Anasori, B., Kibsgaard, J.,
Strickler, A.L., Lukatskaya, M.R., Gogotsi, Y., Jaramillo, T.F. & Vojvodic,
A. 2016. Two-dimensional molybdenum carbide (MXene) as an efficient
electrocatalyst for hydrogen evolution. ACS
Energy Letters 1(3): 589-594. https://doi.org/10.1021/acsenergylett.6b00247
Wang, Q., He, J., Shi, Y., Zhang, S., Niu,
T., She, H. & Bi, Y. 2017. Designing non-noble/semiconductor Bi/BiVO4
photoelectrode for the enhanced photoelectrochemical performance. Chemical Engineering Journal 326: 411-418.
https://doi.org/10.1016/j.cej.2017.05.171
Yue, X., Yi, S., Wang, R., Zhang, Z. & Qiu, S. 2017.
A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen
production from water splitting. Journal
of Materials Chemistry A 5(21): 10591-10598. https://doi.org/10.1039/C7TA02655B
Zhou, Y., Tan, Y., Xiang, Y. & Zhu, J. 2019.
Construction of urchin‐like ZnO/TiO2 direct Z‐scheme
system to improve charge separation. ChemistrySelect 4(44): 12963-12970. https://doi.org/10.1002/slct.201903905
*Corresponding author; email:
khuzaim@ukm.edu.my
|